COMPUTATION OF STEADY-STATE RADIAL DISTRIBUTION
OF FINELY DISPERSED PARTICLES IN A VERTICAL
TURBULENT GAS FLOW

Z. R. Gorbis, F., E. Spokoinyi, UDC 541.182.3
and R, V., Zagainova.

The technique and results of computation of the radial distribution of the concentration of solid
particles suspended in an axisymmetric stabilized turbulent flow are discussed for different
types of interaction of the particle flux with the walls of the channel.

The intensity of the transfer processes by gaseous suspension flows is to a large extent determined by
the radial distribution of the particles in the flow. A subsonic axisymmetric flow of gaseous suspension with
Stokes particles is investigated. The longitudinal distribution of the concentration has been investigated quite
extensively {l]. The results of theoretical investigations of the transverse distribution of the particles are
very incomplete, and in a number of cases they are contradictory (for example, see {2,3]). This is apparently
accounted for by the following factors: a)the use of any one mechanism of transfer of particles without suf-
ficient justification (convective or diffusion) and also the investigation of only the core or the region of the
flow near the walls; b) the absence of sufficiently reliable information for determining the diffusion coeffi~
cient of particles in the entire flow field (for example, see [4]); c) the lack or inadequate accuracy of compu-
tations of the field of the radial velocities of the particles as discussed in [5]; d) arbitrary choice of boundary
conditions (for example, in [2, 6, 7]).

In the present work an attempt is made to evaluate the particle concentration field taking into considera-’
tion the above~-mentioned peculiarities.

The concentration field is formed as a result of joint action of three particle fluxes: convective flux jc,
diffusion flux ipe and the flux of particles at the flow boundary jy:
| jo=up, jp =—D,gradp, j, =c*. @)

In order to estimate the convective component of the radial mass flux it is necessary to know the local trans-
verse time-averaged velocity of the particles vg. It must be determined only from the system of equations of
motion [5] with complete consideration of the basic force effects leading to the transverse displacement of the
particles {hermophoresis, electrostatic charge, inertia, Saffman force, etc.). The numerical solution of
this system, carried out by the authors, made it possible to obtain typical curves of the radial distribution of
vg [5].

The coefficient of diffusion of particles Dg can be found from the formula
Sc—! = Sc;! 4 Sc;t. (2)

Here Scpi = 2KT/3mpr’dg isthe maximum value of the Schmidt number determining the Browniandiffusion; Sei!=
¥R, Tr)v*/v is determined by the turbulent diffugion of particles. The turbulent viscosity coefficient v * is
computed for the core of the flow and for the layer adjacent to the walls by the following formulas [8, 9}:
iv=6-107% (0<{y<<7.8); @)
v¥v =0.39(y — 7.07)(0.03 4+ 0.97R)  (y>7.8), @)

while the coefficient ¥ R, rr), which takes into consideration the inertia of the pulsating motion of the particles,
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is a function of the radial coordinate and the relaxation time of the particles [10]. The need for introducing a
correction function ¥ is due to the passage of the particles from one vortex to the other, which leads to a certain
decrease of Dgt compared to v * in the core of the flow and possibly to an increase in the region adjacent to
the wall, For this ¥ is different from 1, Quantitative estimates made for the cases ¥ = 0.5 and ¥ = 2 show
that the particle concentration profile retains its character and changes only quantitatively, other conditions
remaining unchanged. - In view of this, and-also dueto the absence of direct data for carrying out quantitative
estimates, inthe first approximation ¥ is faken equal to.1 for the investigated fine particles.,

The estimate of the particle:flux.jy constitutes.the main problem in different theoretical discussions -[11,
12]:fabsolutelyabsorbing wall). According to [2], the-determination-of j accordingto By = 0 is not correct,
The choice of By =const = 0 [7] is highly arbitrary, since in the general case this quantily must be deter-
mined from the solution of the concentration problem. I is better to use the coefficient ¢ introduced in [13] as
the probability of capture of the particles by the wall, giving an estimate of the ratio of j, to the particle flux
j* arriving at the wall. Inthe more general case, the coefficient ¢ must be taken as the ratio of jy to the
radial particle flux j* having the same sign as jw. If the wall is a source for particle mass, then jy < 0 and
j* is the particle flux coming out of the wall. With this definition 0 = ¢ = 1, and specific values of this coef-
ficient can be varied sufficiently arbitrarily, since they can be ensured by a suitable choice of the properties
of the wall (@adhesiveness, ideal elasticity, penetrability, roughness, etc.). Inthis sense, for a dispersed
flow the coefficient ¢ is essentially a quantity occurring in the boundary conditions. However, for the case
of a completely penetrable (by particles) wall, the condition ¢ =1 is not sufficient and must be supplemented
by information regarding one of the quantities jy or B¢ I is obvious that the investigation of the processes
occurring immediately at the wall (adhesion, cohesion, denudization, blowing, sucking, and so forth), neces-
sary for determining c, is an independent complex problem which so far has not been adequately studied [14].

According to the law of conservation of mass of particles, in the stationary conditions we have

1 @ -, 0B ‘l i} ( -, 0B
—_—— —ReBV,— Sc™! _— ReBU,—Sc™! =0,
R OR[R( Re BV, BR) +ox ¢ ax) ©)
where B = 3/3¢, Vg = vg/uy, R =1/ry, and X = x/ry. Away from the entrance to the channel the concentra-

tion profiles may be assumed to be similar, i,e., 8B/6X ~ dB/dX = —ZJW/BOus . Neglecting the diffusion
transfer along the axis compared to the convective transfer we have

d -, dB ir
—|R[{— ReBV,—Sc1==)|=2R sJ,,,,J—
iR [R( ReBVs =S R )} 7, o ©)
For B{r = 0) =1 the solution of this equation is of the form
R B Rl
B(R) = exp [ (a (R) dR] — Ty [ B(R)exp H a(R) dR] dR’} , (n
b b
R
Sc f u RdR
a(R)=—ReV,Sc, b(R)=—1 ®)
2 R | u,RdR
b

If c= 0 Jw = 0), formula (7) permits direct computation of the concentration field. For 0 < ¢ <1 the convec-
tive and diffusive fluxes have different directions. If J* = Jg, then Jy = cJg; for J* = Jp, from Jo(1) +Ip@) =
Jyw it follows that Jp = Jo/(c — 1). Then in the general case we have

i _ I, V,(1)=>0,
J,=—kcRe B(1)V, (1), k’—.{(c_l)‘l, V(1) <0. @

2
Using this expression for Jy in formula (7), written for R =1, we determine the quantity B(1) = B

1

’a(R) dR}dR} : 10)

B, ={exp[~—— Ca(R)dR] -—che Ve fb(R')exp[
5 §

o/
[

Expression (10) permits one to determine the particle concentration at the wall; then the quantity Jy, and the
concentration field can be computed from (9) and (7), respectively.

If the nature of the interaction of the particles with the wall is determined by the condition ¢ =1 @bsolutely
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absorbing or penetrable wall), then Jy = J* = Jo + Jp. Inthis case, when the quantity J is given directly,
the computation of the field B{R) is done using expression (7). If in supplementing the condition ¢ =1 the value
of By is given, then the solution of Eq, (6) has the form

B, ?b exp (___ FadR’) dR -+ exp ( ‘}' adR) b eXp RadR/ \ iR
BR)= : : i T : R : (11)
exp (Y adR) S bexp( { adR’)
R b b
Jw ll—~B exp (— \ adR)]/ b exp (—- \ adR’) dR. 12)

Thus, formulas (7)-(12) with the corresponding specification of the boundary conditions permit one to
compute the concentration field and the quantity Jw for all basic cases of interaction of particle flux with the
wall. For example, since according to [15] the condition ¢ =1 is satisfied only for a specially prepared wall
and under real conditions 0 = ¢ = 1 is more typical, in the subsequent analysis we shall consider only the
caseec <1,

For the computation of the concentration field we use formulas (7)-(10). However, for determining the
field Vs the system of equations of motion are solved beforehand under the assumption that B =1 [5]. The
obtained values of Vg (R) were used for numerical evaluation of the integrals occurring in (7), (8), and (10).
The dependence BR) thus determined was next used in the iteration refinement of the velocity field and the
particle concentration field,

This procedure of computations was realized on an M-220 computer. The computations were carried
out for the same conditions as in [5]: D = 0,1-1 m; uy;=1-10 m/sec; dg = 0.1-1 pu; Zgog/p =107 2.10% g =
107%-107* C/kg. Inthe numerical analysis the air flow for P =1 bar, T = 300°K, Tw/T, = 0.8-1.2, and Jy =
0 was taken into consideration, The specific difficulties in the computation of the concentration fields are re-
lated to the nature of the behavior of the diffusion coefficient Dg near the wall. As R —~ 1, Dg decreases
sharply and the number Sc correspondingly increases. This leads to an increase of the absolute values of a

and jr‘ adR in the given zone. For certain variants of the initial data this leads to an overcrowding of the com-
0
puter grid in the computation of the exponent of the integral, starting from a certain R * very close to unity.

If the value of the integral is large in absolute magnitude and negative, then inthe regionR¥ =R =1
we can put B = 0, since both terms in expression (10) are positive and increase sharply. If the value of the
integral is positive and large, then for ¢ = 0 formula (10) shows that the particle concentration at the wall
tends to infinity. Physically, this means that a dense layer structure is produced at the wall, in which the
limiting relative concentration is B = 0.6,331. For ¢ # 0the first term in (10) is much smaller than the second,
and in determining By, this term can be neglected, The values of B(R) for R <R * are computed from (7)
using the value of By, already determined, while in the region R* = R <1 the values of B(R) are computed by
interpolation. Estimates show that for all investigated variants the errors caused by the above approximations
are negligibly small, Furthermore, inthe majority of cases R * is very close to unity and the interpolation
intended for ¢ = 0 is necessary only for distances smaller than 5% of the thickness of the viscous sublayer.

The results of the computations enable us to elucidate the typical concentration fields for the investigated
conditions (Fig. 1) formed under the influence of certain combinations of regime and boundary conditions.
According to Fig. la the concentration field in the core of the flow is practically nongradient with a sharp in-
crease of B in the zone adjacent to the wall. At the wall, the By may attain the limiting value, approaching
the particle concentration in the dense layer. Such distributions of B are typical for conditions when there is
no deposition of particles at the walls (¢ = 0, Jy, = 0) and when the value of average transverse velocity of par-
ticles near the wall is positive and sufficiently large. For Vg the conditions are satisfied in those (investigated
in [5]) cases when the force of the positive thermophoresis (curve 1), the electrostatic force andthe positive
thermophoresis (curve 2), and the effect of migration and Saffman force () are predominant, In ail these
cases the concentration distribution has the same nature as shown in Fig. 1la. This is accounted for by the
fact that the resultant of all the forces acting on the particles and directed along the radius leads to a convec-
tive transport of particles to the wall, In view of Jw = 0, this flux must be compensated for by the diffusion
transport from the wall. This nature of the concentration field agrees with experimental data, for example,
[61.

For Vg < 0 and ¢ = 0the direction of the diffusion transfer changes, and in the presence of a nongradient
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Fig. 1, Typical radial distributions of concentration B = g/
B¢ (continuous lines) and the corresponding curves of the aver-
age transverse velocity of the particles Vg =vg/u, (dashed
curves 1), which are valid for the following values  [5]: a-d)
Re =6.2-10%; Scy =3.3-10% Kg =3.25°10~%; a,b,c) Fr =
9.8; D/dg =105 Stk = 0.465-10"% d,e) Fr = 9.8+107%; D/
dg =10°% Stk =0.465-107%; a) Tw/T,= 0.9, c=0;b) respec-
tively, 1.1 and 0; c¢) 1.0 and 0.99; d) 1.0and 0.99; e) 0.8 and
0.99; dashed-dot lines (curves 2 and 3) show other types of
curves of Vg [R) for which the same radial distribution of con-
centration occurs,

nature of the field a sharp decrease of the concentration is observed in the core of the flow in the region near
the wall (Fig. 1b). Inthe immediate neighborhood of the wall an almost complete absence of particles may be
observed By — 0). The velocity of the particles Vg is formed due to the predominant effect of the negative
force of thermophoresis (curve 1) or by the joint action of this force and the electrostatic force (curve 2) [5].
The results, for which the nonvariability of the concentration along the entire section is typical, are given in
Fig. 1c. This nature of the curves is obtained for 0 < ¢ < 1, when the radial velocily of the particles is very
small irrespective of the nature of the factors determining it. If the wall is absorbing (¢ > 0, Jw > 0) and the
- regime conditions of the gas suspension flow are similar to those in Fig. 1a, then the process of deposition of
particles at the wall leads to a decrease of the concentration gradient near the wall (Fig. 1d).

For the conditions illustrated in Fig. le for c close to unity and for appreciable Vg > 0 in the region near
the wall the abrupt change in Vg in transition from the core of the flow to the viscous sublayer (for example,
due to the thermophoresis force) leads to the appearance of a minimum of B (R) in this region. -'The common
feature in Fig, la-e is that the concentration field in the core of the flow changes very slightly (inthe range
5% of the values of By). This result is in good agreement with the data of [17,18]. At the sametime, in a thin
region adjacent to the wall (excluding the case shown in Fig. 1c) a noticeable change in B-occurs. This is ex-
plained, on the one hand, by the sharp decrease of the concentration of the coefficients of turbulent diffusion
as the particles approach the wall and, on the other hand, by the significant increase of the contribution of the
radial convective transport in the region near the wall. I should be noted that the intensity of the processes
of transport of momentum, heat, and mass to the wall is to a large extent limited by the phenomena occurring
near the wall.  Therefore, inthe computation of these processes it is necessary to consider the significant
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changes of the particle concentration in the zone of the flow adjacent to the wall, although it occupies only a
small part of the cross section. Estimates of the thickness of this zone showed that the most significant varia~
tions of the field B[R) occur in a unique concentrated boundary layer whose thickness is smaller than the thick-
ness of the viscous sublayer; a smoother variation of the concentration occurs also in the transition zone of
the flow,

Only some results of the computation are presented in Fig., 1. However, these distributions of B(R) are
_quite typical for the motion of finely dispersed particles in an ascending turbulent gas flow. The formulas de-
rived here for the computation of concentration fields in the segment of stabilized B profile can be used also
for other conditions in which mechanisms determining Vg and ¥ differ significantly from those investigated
here (for example, a significant effect of the inertia of the particles, their collisions, polydispersive nature,
etc.). The study of the distribution of particle concentration in suspension flows in the initial segment of the
flow is also of definite interest, but this is an independent problem.

NOTATION

c, coefficient similar to the probability of capture of particles by the wall; dg, D, diameters of the
particles and channel, m; Dg, diffusion coefficient of particles, m?%/sec; q, ratio of charge of the particle to
its mass, C/kg; r, x, radial and longitudinal coordimates, m; T, temperature, °K; u, v, longitudinal and
transverse velocities, m/sec; j, mass flux density normalized to particle density, m/sec; y, dimensionless
distance from the wall, determined from the "wall law"; B, volume concentration of the particles in the flow;
£y, dielectric constant in vacuum; v, v*, molecular and molar viscosity coefficients, m?/sec; tr, relaxation
time of the particles, sec; p, density, kg/m3; Reynolds number, Re =ugD/v; Froude number Fr = gD/uoz;
3tokes number Stk — Repgds?/18pD?%; Schmidt number Sc = v/Dg; complex Kg =qD? pg3¢/equel. Indices: 0,
the value at the axis of the flow; s, solid particles; t, turbulent analog; w, value at the wall of the channel;
—, averaged over the cross section of the channel.
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